
Model View Controller
These days, Model View Controller (MVC) is a buzzword in the ASP.NET
community, thanks to the upcoming ASP.NET MVC framework that Microsoft
is expected to launch soon (at the time of writing of this book, only Preview 5
was available). This chapter is dedicated to MVC design and the ASP.NET
MVC framework.

In this chapter, we will learn about MVC design patterns, and how Microsoft
has made our lives easier by creating the ASP.NET MVC framework for easier
adoption of MVC patterns in our web applications. The following are some
highlights of this chapter:

Understanding the Page Controller pattern
Understanding the need for the MVC design pattern
Learning the basics of MVC design
Understanding the Front Controller design pattern
Understanding REST architecture
Understanding the ASP.NET MVC framework
Implementing the ASP.NET MVC framework in a sample application

Page Controller Pattern in ASP.NET
So far, all web pages we have created in our coding samples are based on the page
controller pattern, which is the default architecture in the ASP.NET web forms. Let
us understand page controller in detail.

In Chapter 2, we noticed that inline coding samples in ASP and ASP.NET had HTML
and code scripts mixed together, creating a hard-to-maintain code base. Then we
studied how code-behind classes "modularized" the architecture by separating
the logic from the HTML. This code-behind architecture is a page controller based
design, where by controller we mean the components that control the rendering of
the HTML, which in the case of ASP.NET web forms are the code-behind classes.

•
•
•
•
•
•
•

Model View Controller

[110]

Each page has a code-behind class, and the URL requested by the client is directly
handled by individual pages. Any button or server control causing postbacks (such
as a DropDownList control) is handled directly by the page code-behind class.
So understanding the page life cycle is very important in a page controller based
architecture. Here is a diagram that shows how a page controller pattern works in
ASP.NET:

MyPage1 Code-Behind
Controller

MyPage1.aspx

Client Request

MyPage2.aspx

MyPage1 ASPX
HTML VIEW

MyPage2 Code-Behind
HTML View

MyPage2 ASPX
HTML View

So for every page, its code-behind will act as a controller and handle all requests, and
return processed HTML to the client browser.

Problems with Page Controller Design
In the page controller design we have a controller for each distinct page in our
application (a separate code-behind class having all of the logic that fires sequentially
as each page loads according to the ASP.NET page life cycle). So for big projects,
there could potentially be a lot of code in the code-behind files, creating problems in
code maintenance and support.

GUI Unit Testing
Separating business logic and data access code from the GUI is one of the steps
leading towards a better design. In the previous chapters, we saw how to implement
a basic n-tier architecture using tiers and layers to achieve loose coupling. But testing
the application, especially the GUI and the code-behind classes in a page controller
based model, is very difficult because the only way to test something like a button
click's code-behind event handler is to click the button itself! This means that if we
put more and more code in code-behind classes (which inevitably becomes the case
in large web applications with lots of UI controls),

